Skip to main content

Testing External APIs With Mock Servers

Getting Started

Start by following the First steps section of the previous post. Or grab the code from the repository. Make sure the test passes before moving on:
$ nosetests --verbosity=2 project
test_todos.test_request_response ... ok

----------------------------------------------------------------------
Ran 1 test in 1.029s

OK

Testing the Mock API

With the set up complete, you can program your mock server. Write a test that describes the behavior:
project/tests/test_mock_server.py
# Third-party imports...
from nose.tools import assert_true
import requests


def test_request_response():
    url = 'http://localhost:{port}/users'.format(port=mock_server_port)

    # Send a request to the mock API server and store the response.
    response = requests.get(url)

    # Confirm that the request-response cycle completed successfully.
    assert_true(response.ok)
Notice that it starts off looking almost identical to the real API test. The URL has changed and is now pointing to an API endpoint on localhost where the mock server will run.
Here is how to create a mock server in Python:
project/tests/test_mock_server.py
# Standard library imports...
from http.server import BaseHTTPRequestHandler, HTTPServer
import socket
from threading import Thread

# Third-party imports...
from nose.tools import assert_true
import requests


class MockServerRequestHandler(BaseHTTPRequestHandler):
    def do_GET(self):
        # Process an HTTP GET request and return a response with an HTTP 200 status.
        self.send_response(requests.codes.ok)
        self.end_headers()
        return


def get_free_port():
    s = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM)
    s.bind(('localhost', 0))
    address, port = s.getsockname()
    s.close()
    return port


class TestMockServer(object):
    @classmethod
    def setup_class(cls):
        # Configure mock server.
        cls.mock_server_port = get_free_port()
        cls.mock_server = HTTPServer(('localhost', cls.mock_server_port), MockServerRequestHandler)

        # Start running mock server in a separate thread.
        # Daemon threads automatically shut down when the main process exits.
        cls.mock_server_thread = Thread(target=cls.mock_server.serve_forever)
        cls.mock_server_thread.setDaemon(True)
        cls.mock_server_thread.start()

    def test_request_response(self):
        url = 'http://localhost:{port}/users'.format(port=self.mock_server_port)

        # Send a request to the mock API server and store the response.
        response = requests.get(url)

        # Confirm that the request-response cycle completed successfully.
        print(response)
        assert_true(response.ok)
First, create a subclass of BaseHTTPRequestHandler. This class captures the request and constructs the response to return. Override the do_GET() function to craft the response for an HTTP GET request. In this case, just return an OK status. Next, write a function to get an available port number for the mock server to use.
The next block of code actually configures the server. Notice how the code instantiates an HTTPServer instance and passes it a port number and a handler. Next, create a thread, so that the server can be run asynchronously and your main program thread can communicate with it. Make the thread a daemon, which tells the thread to stop when the main program exits. Finally, start the thread to serve the mock server forever (until the tests finish).
Create a test class and move the test function to it. You must add an additional method to ensure that the mock server is launched before any of the tests run. Notice that this new code lives within a special class-level function, setup_class().
Run the tests and watch them pass:
$ nosetests --verbosity=2 project

Testing a Service that Hits the API

You probably want to call more than one API endpoint in your code. As you design your app, you will likely create service functions to send requests to an API and then process the responses in some way. Maybe you will store the response data in a database. Or you will pass the data to a user interface.
Refactor your code to pull the hardcoded API base URL into a constant. Add this variable to a constants.py file:
project/constants.py
BASE_URL = 'http://jsonplaceholder.typicode.com'
Next, encapsulate the logic to retrieve users from the API into a function. Notice how new URLs can be created by joining a URL path to the base.
project/services.py
# Standard library imports...
from urllib.parse import urljoin

# Third-party imports...
import requests

# Local imports...
from project.constants import BASE_URL

USERS_URL = urljoin(BASE_URL, 'users')


def get_users():
    response = requests.get(USERS_URL)
    if response.ok:
        return response
    else:
        return None
Move the mock server code from the feature file to a new Python file, so that it can easily be reused. Add conditional logic to the request handler to check which API endpoint the HTTP request is targeting. Beef up the response by adding some simple header information and a basic response payload. The server creation and kick off code can be encapsulated in a convenience method, start_mock_server().
project/tests/mocks.py
# Standard library imports...
from http.server import BaseHTTPRequestHandler, HTTPServer
import json
import re
import socket
from threading import Thread

# Third-party imports...
import requests


class MockServerRequestHandler(BaseHTTPRequestHandler):
    USERS_PATTERN = re.compile(r'/users')

    def do_GET(self):
        if re.search(self.USERS_PATTERN, self.path):
            # Add response status code.
            self.send_response(requests.codes.ok)

            # Add response headers.
            self.send_header('Content-Type', 'application/json; charset=utf-8')
            self.end_headers()

            # Add response content.
            response_content = json.dumps([])
            self.wfile.write(response_content.encode('utf-8'))
            return


def get_free_port():
    s = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM)
    s.bind(('localhost', 0))
    address, port = s.getsockname()
    s.close()
    return port


def start_mock_server(port):
    mock_server = HTTPServer(('localhost', port), MockServerRequestHandler)
    mock_server_thread = Thread(target=mock_server.serve_forever)
    mock_server_thread.setDaemon(True)
    mock_server_thread.start()
With your changes to the logic completed, alter the tests to use the new service function. Update the tests to check the increased information that is being passed back from the server.
project/tests/test_real_server.py
# Third-party imports...
from nose.tools import assert_dict_contains_subset, assert_is_instance, assert_true

# Local imports...
from project.services import get_users


def test_request_response():
    response = get_users()

    assert_dict_contains_subset({'Content-Type': 'application/json; charset=utf-8'}, response.headers)
    assert_true(response.ok)
    assert_is_instance(response.json(), list)
project/tests/test_mock_server.py
# Third-party imports...
from unittest.mock import patch
from nose.tools import assert_dict_contains_subset, assert_list_equal, assert_true

# Local imports...
from project.services import get_users
from project.tests.mocks import get_free_port, start_mock_server


class TestMockServer(object):
    @classmethod
    def setup_class(cls):
        cls.mock_server_port = get_free_port()
        start_mock_server(cls.mock_server_port)

    def test_request_response(self):
        mock_users_url = 'http://localhost:{port}/users'.format(port=self.mock_server_port)

        # Patch USERS_URL so that the service uses the mock server URL instead of the real URL.
        with patch.dict('project.services.__dict__', {'USERS_URL': mock_users_url}):
            response = get_users()

        assert_dict_contains_subset({'Content-Type': 'application/json; charset=utf-8'}, response.headers)
        assert_true(response.ok)
        assert_list_equal(response.json(), [])
Notice a new technique being used in the test_mock_server.py code. The response = get_users() line is wrapped with a patch.dict() function from the mock library.
What does this statement do?
Remember, you moved the requests.get() function from the feature logic to the get_users() service function. Internally, get_users() calls requests.get() using the USERS_URL variable. The patch.dict() function temporarily replaces the value of the USERS_URL variable. In fact, it does so only within the scope of the with statement. After that code runs, the USERS_URL variable is restored to its original value. This code patchesthe URL to use the mock server address.
Run the tests and watch them pass.
$ nosetests --verbosity=2
test_mock_server.TestMockServer.test_request_response ... 127.0.0.1 - - [05/Jul/2016 20:45:30] "GET /users HTTP/1.1" 200 -
ok
test_real_server.test_request_response ... ok
test_todos.test_request_response ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.871s

OK

Skipping Tests that Hit the Real API

We began this tutorial describing the merits of testing a mock server instead of a real one, however, your code currently tests both. How do you configure the tests to ignore the real server? The Python ‘unittest’ library provides several functions that allow you to skip tests. You can use the conditional skip function ‘skipIf’ along with an environment variable to toggle the real server tests on and off. In the following example, we pass a tag name that should be ignored:
$ export SKIP_TAGS=real
project/constants.py
# Standard-library imports...
import os


BASE_URL = 'http://jsonplaceholder.typicode.com'
SKIP_TAGS = os.getenv('SKIP_TAGS', '').split()
project/tests/test_real_server.py
# Standard library imports...
from unittest import skipIf

# Third-party imports...
from nose.tools import assert_dict_contains_subset, assert_is_instance, assert_true

# Local imports...
from project.constants import SKIP_TAGS
from project.services import get_users


@skipIf('real' in SKIP_TAGS, 'Skipping tests that hit the real API server.')
def test_request_response():
    response = get_users()

    assert_dict_contains_subset({'Content-Type': 'application/json; charset=utf-8'}, response.headers)
    assert_true(response.ok)
    assert_is_instance(response.json(), list)
Run the tests and pay attention to how the real server test is ignored:
$ nosetests --verbosity=2 project
test_mock_server.TestMockServer.test_request_response ... 127.0.0.1 - - [05/Jul/2016 20:52:18] "GET /users HTTP/1.1" 200 -
ok
test_real_server.test_request_response ... SKIP: Skipping tests that hit the real API server.
test_todos.test_request_response ... ok

----------------------------------------------------------------------
Ran 3 tests in 1.196s

OK (SKIP=1)

Popular posts from this blog

How to read or extract text data from passport using python utility.

Hi ,  Lets get start with some utility which can be really helpful in extracting the text data from passport documents which can be images, pdf.  So instead of jumping to code directly lets understand the MRZ, & how it works basically. MRZ Parser :                 A machine-readable passport (MRP) is a machine-readable travel document (MRTD) with the data on the identity page encoded in optical character recognition format Most travel passports worldwide are MRPs.  It can have 2 lines or 3 lines of machine-readable data. This method allows to process MRZ written in accordance with ICAO Document 9303 (endorsed by the International Organization for Standardization and the International Electrotechnical Commission as ISO/IEC 7501-1)). Some applications will need to be able to scan such data of someway, so one of the easiest methods is to recognize it from an image file. I 'll show you how to retrieve the MRZ infor...

How to generate class diagrams pictures in a Django/Open-edX project from console

A class diagram in the Unified Modeling Language ( UML ) is a type of static structure diagram that describes the structure of a system by showing the system’s classes, their attributes, operations (or methods), and the relationships among objects. https://github.com/django-extensions/django-extensions Step 1:   Install django extensions Command:  pip install django-extensions Step 2:  Add to installed apps INSTALLED_APPS = ( ... 'django_extensions' , ... ) Step 3:  Install diagrams generators You have to choose between two diagram generators: Graphviz or Dotplus before using the command or you will get: python manage.py graph_models -a -o myapp_models.png Note:  I prefer to use   pydotplus   as it easier to install than Graphviz and its dependencies so we use   pip install pydotplus . Command:  pip install pydotplus Step 4:  Generate diagrams Now we have everything installed...

How to Remove course from Open-edX

Go to vagrant  => 1. In the edx-platform directory:  - cd /edx/app/edxapp/edx-platform 2. Run the following Django management command:   - sudo -u www-data /edx/bin/python.edxapp /edx/bin/manage.edxapp lms dump_course_ids --settings aws    - sudo -u www-data /edx/bin/python.edxapp /edx/bin/manage.edxapp lms dump_course_ids --settings=devstack 3. Find the course ID which you'd like to delete in the resulting list of course IDs. 4. Copy the course ID into the following command and run it:  - sudo -u www-data /edx/bin/python.edxapp /edx/bin/manage.edxapp cms delete_course <COURSE_ID> --settings aws  -   sudo -u www-data /edx/bin/python.edxapp /edx/bin/manage.edxapp cms delete_course <COURSE_ID> --settings=devstack  - You'll be asked to verify the deletion . To verify the deletion, run the command from step 2 above and ensure that the course ID is not in the list. Help reference : ...